
INTELLIGENT SYSTEMS (CSE-303-F) 
 

Section A 
 

Tic Tac Toe Game playing strategies 



Tic–Tac–Toe game playing 
 
 Two players  

 human  
 computer.   

 The objective is to write a computer program in such a 
way that computer wins most of the time.  

 Three approaches are presented to play this game 
which increase in   
 Complexity 
 Use of generalization 
 Clarity of their knowledge 
 Extensibility of their approach 

 These approaches will move towards being 
representations of what we will call AI techniques. 



Tic Tac Toe Board- (or Noughts and crosses, Xs and Os)  

  

1 2 3 

4 5 6 

7 8 9 

positions 

It is two players, X and O, game who take turns marking the 

spaces in a 3×3 grid. The player who succeeds in placing three 

respective marks in a horizontal, vertical, or diagonal row wins 

the game.  



Approach 1 

Data Structure 

 Consider a Board having nine elements vector. 

 Each element will contain 

● 0  for blank  

● 1  indicating X player move 

● 2  indicating O player move 

 Computer may play as X or O player.  

 First player who so ever is always plays X. 

 



Move Table  MT 

 MT is a vector of 39 elements, each element of 
which is a nine element vector representing board 
position.   

 Total of 39 (19683) elements in MT 
 

 Index Current Board position  New Board position  

 0  000000000   000010000  
 1  000000001   020000001   
 2  000000002    000100002  
 3  000000010    002000010  
  : 
  :  
     
  



Algorithm 

 To make a move, do the following: 

 View the vector (board) as a ternary number  and 
convert it to its corresponding decimal number. 

 Use the computed number as an index into the MT and 
access the vector stored there. 

● The selected vector represents the way the board will look 
after the move.  

 Set board equal to that vector. 

 



Comments 
 

 Very efficient in terms of time but has several 
disadvantages. 

 Lot of space to store the move table. 

 Lot of work to specify all the entries in move table. 

 Highly error prone as the data is voluminous. 

 Poor extensibility  

● 3D tic-tac-toe  = 327 board position to be stored. 

 Not intelligent at all. 

 



Approach 2 

 

 Data Structure 

 Board: A nine-element vector representing the board: B[1..9] 

 Following conventions are used 

  2 - indicates blank 

  3 - X 

  5 - 0 

 Turn: An integer   

  1 - First move 

  9 - Last move 



Procedures Used 
 Make_2   Tries to make valid 2 

 
 Make_2 first tries to play in the center if free and returns 

5 (square number).   
 If not possible, then it tries the various suitable non 

corner square and returns square number. 
 

 Go(n)  makes a move in square ‘n’ which is blank 
represented by 2. 



Procedure - PossWin 

 PossWin (P)  Returns  
 

 0, if player P cannot win in its next move, 
 otherwise the number of square that constitutes a 

winning move for P. 
 

 Rule 
 If PossWin (P) = 0 {P can not win} then find whether 

opponent can win.  If so, then block it.  
 



Strategy used by PosWin 

 PosWin checks one at a time, for each rows /columns 
and diagonals as follows. 

 

 If  3 * 3 * 2  = 18 then player X can win  

 else if 5 * 5 * 2 = 50 then player O can win 

 

 These procedures are used in the algorithm on the 
next slide. 

 



Algorithm 

 Assumptions 

 The first player always uses symbol X. 

 There are in all 8 moves in the worst case. 

 Computer is represented by  C and Human is 
represented by  H. 

 Convention used in algorithm on next slide  

 If C plays first (Computer plays X, Human plays O) - Odd 
moves 

 If H plays first (Human plays X, Computer plays O) - Even 
moves 

 For the sake of clarity, we use C and H. 



Algo - Computer plays first – C plays odd moves 
 Move 1:   Go (5)  

 Move 2: H plays 

 Move 3: If B[9] is blank, then Go(9) else  Go(3) {make 2}  

 Move 4: H plays 

 Move 5: {By now computer has played 2 chances}   

 If PossWin(C) then {won} Go(PossWin(C))  

 else {block H} if PossWin(H) then Go(PossWin(H)) else if B[7] is 
blank then  Go(7) else Go(3) 

 Move 6: H plays 

 Moves 7 & 9 :  

 If PossWin(C) then {won} Go(PossWin(C))  

 else {block H}  if PossWin(H) then Go(PossWin(H)) else 
Go(Anywhere) 

 Move 8: H plays  



Algo - Human plays first – C plays even moves 
 Move 1:   H plays  
 Move 2: If B[5] is blank, then Go(5) else  Go(1) 
 Move 3: H plays 
 Move 4: {By now H has played 2 chances}  

 If PossWin(H) then {block H} Go (PossWin(H))  
 else Go (Make_2) 

 Move 5: H plays 
 Move 6: {By now both have played 2 chances}   

 If PossWin(C) then {won} Go(PossWin(C))  
 else {block H}  if PossWin(H) then Go(PossWin(H)) else 

Go(Make_2)  
 Moves 7 & 9 : H plays 
 Move 8: {By now computer has played 3 chances}  

 If PossWin(C) then {won} Go(PossWin(C))  
 else {block H}  if PossWin(H) then Go(PossWin(H)) else 

Go(Anywhere)   
 



Complete Algorithm – Odd moves or even moves for C 
playing first or second 

 Move 1:   go (5)  
 Move 2: If B[5] is blank, then Go(5) else  Go(1) 
 Move 3: If B[9] is blank, then Go(9) else  Go(3) {make 2}  
 Move 4: {By now human (playing X) has played 2 chances} If PossWin(X) 

then {block H} Go (PossWin(X)) else Go (Make_2) 
 Move 5: {By now computer has played 2 chances}  If PossWin(X) then 

{won} Go(PossWin(X)) else {block H}  if PossWin(O) then Go(PossWin(O)) 
else if B[7] is blank then  Go(7) else Go(3) 

 Move 6: {By now both have played 2 chances}  If PossWin(O) then {won} 
Go(PossWin(O)) else {block H}  if PossWin(X) then Go(PossWin(X)) else 
Go(Make_2)  

 Moves 7 & 9 : {By now human (playing O) has played 3 chances} If 
PossWin(X)  then {won} Go(PossWin(X)) else {block H}  if PossWin(O) 
then Go(PossWin(O)) else Go(Anywhere) 

 Move 8: {By now computer has played 3 chances} If PossWin(O) then 
{won} Go(PossWin(O)) else {block H}  if PossWin(X) then Go(PossWin(X)) 
else Go(Anywhere)   
 



Comments 

 Not as efficient as first one in terms of time.   

 Several conditions are checked before each move. 

 It is memory efficient. 

 Easier to understand & complete strategy has been 
determined in advance 

 Still can not generalize to 3-D. 

  

 



Approach 3 
 Same as approach 2 except for one change in the 

representation of the board. 

 Board is considered to be a magic square of size 3 X 3 
with 9 blocks numbered by numbers indicated by magic 
square. 

 This representation makes process of checking for a 
possible win more simple.  

 



Board Layout – Magic Square 
 Board Layout as magic square. Each row, column 

and diagonals add to 15. 

 
 
   8  3  4  
    
 
   1  5  9  
    
 

   6  7  2  

Magic Square 



Strategy for possible win for one player 

 Maintain the list of each player’s blocks in which he 
has played. 

 Consider each pair of blocks that player owns. 

 Compute difference D between 15 and the sum of the 
two blocks. 

 If D < 0 or D > 9 then  

 these two blocks are not collinear and so can be 
ignored  

 otherwise if the block representing difference is blank 
(i.e., not in either list) then a move in that block will 
produce a win. 



Working Example of algorithm 
 Assume that the following lists are maintained up to 

3rd  move. 
 Consider the magic block shown in slide 18.  

 First Player X (Human) 
 

   8 3      
  

 Second Player O (Computer) 
 

   5       
   



Working – contd.. 

 Strategy is same as in approach 2 

 First check if computer can win.   

 If not then check if opponent  can win.   

 If so, then block it and proceed further. 

 Steps involved in the play are: 

 First chance, H plays in  block numbered as 8 

 Next C plays in block numbered as 5 

 H plays in block numbered 3 

 Now there is a turn of computer.   



Working – contd.. 
 Strategy by computer: Since H has played two 

turns and C has played only one turn, C checks if 
H can win or not.  

 Compute sum of blocks played by H  

 S = 8 + 3 = 11  

 Compute D = 15 – 11 = 4 

 Block 4 is a winning block for H.  

 So block this block and play in block numbered 4.  

 The list of C gets updated with block number 4 as follows: 

  H    8   3   C     5    4  
  



Contd.. 
 Assume that H plays in block numbered 6. 

 Now it’s a turn of C. 
 C checks, if C can win as follows:  

 Compute sum of blocks played by C  

 S = 5 + 4 = 9  

 Compute D = 15 – 9 = 6 

 Block 6 is not free, so C can not win at this turn.  

 Now check if H can win. 
 Compute sum of new pairs (8, 6) and (3, 6) from the list of H    

 S = 8 + 6 = 14 

 Compute D = 15 – 14 = 1 

 Block 1 is not used by either player, so C plays in block numbered 
as 1 



Contd.. 
 The updated lists at 6th move looks as follows: 

 First Player H 

   8 3 6    

 

 Second Player C 

   5 4   1  

 

 Assume that now H plays in 2. 

 Using same strategy, C checks its pair (5, 1) and (4, 1) 
and finds bock numbered as 9 {15-6 = 9}. 

 Block 9 is free, so C plays in 9 and win the game. 



Comments 
 
 This program will require  more time than two others 

as 

 it has to search a tree representing all possible move 
sequences before making each move. 

  This approach is extensible to handle 

 3-dimensional tic-tac-toe. 

 games more complicated than tic-tac-toe.  

 



3D Tic Tac Toe (Magic cube) 
 All lines parallel to the faces of a cube, and all 4 

triagonals sum correctly to 42 defined by 

   S = m(m3 + 1)/2 , where m=3  

 No planar diagonals of outer surfaces sum to 42. so 
there are probably no magic squares in the cube. 

8 24 10 15 1 26 19 17 6 

12 7 23 25 14 3 5 21 16 

22 11 9 2 27 13 18 4 20 



 8              24                  10 

12                  7                 23 

22                 11                9 

15                     1               26 

25                14               3 

  2                 27              13 

19                17                   6 

  5                21               16 

18                4                20 

8 24 10 15 1 26 19 17 6 

12 7 23 25 14 3 5 21 16 

22 11 9 2 27 13 18 4 20 

•  Magic Cube has 6 outer 

and 3 inner  and 2 diagonal 

surfaces 

• Outer 6 surfaces are not 

magic squares as diagonals 

are not added to 42. 

• Inner 5 surfaces are magic 

square.  

 


