

**INTELLIGENT SYSTEMS (CSE-303-F)** 

Section A

Tic Tac Toe Game playing strategies

Lecture 1

# Tic-Tac-Toe game playing

- Two players
  - human
  - computer.
- The objective is to write a computer program in such a way that computer wins most of the time.
- Three approaches are presented to play this game which increase in
  - Complexity
  - Use of generalization
  - Clarity of their knowledge
  - Extensibility of their approach
- These approaches will move towards being representations of what we will call AI techniques.

### Tic Tac Toe Board- (or Noughts and crosses, Xs and Os)

It is two players, X and O, game who take turns marking the spaces in a 3x3 grid. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game.



# Approach 1

- Data Structure
  - Consider a Board having nine elements vector.
  - Each element will contain
    - o for blank
    - 1 indicating X player move
    - 2 indicating O player move
  - Computer may play as X or O player.
  - First player who so ever is always plays X.

### **Move Table MT**

- MT is a vector of 39 elements, each element of which is a nine element vector representing board position.
- Total of 39 (19683) elements in MT

| IndexC | urrent Board position | New Board position |
|--------|-----------------------|--------------------|
| О      | 00000000              | 000010000          |
| 1      | 00000001              | 02000001           |
| 2      | 00000002              | 000100002          |
| 3      | 00000010              | 002000010          |
| :      |                       |                    |
| :      |                       |                    |
|        |                       |                    |

## Algorithm

- To make a move, do the following:
  - View the vector (board) as a ternary number and convert it to its corresponding decimal number.
  - Use the computed number as an index into the MT and access the vector stored there.
    - The selected vector represents the way the board will look after the move.
  - Set board equal to that vector.

#### **Comments**

- Very efficient in terms of time but has several disadvantages.
  - Lot of space to store the move table.
  - Lot of work to specify all the entries in move table.
  - Highly error prone as the data is voluminous.
  - Poor extensibility
    - 3D tic-tac-toe =  $3^{27}$  board position to be stored.
  - Not intelligent at all.

## Approach 2

- Data Structure
  - **Board**: A nine-element vector representing the board: B[1..9]
  - Following conventions are used
    - 2 indicates blank
    - 3 X
    - 5 0
  - Turn: An integer
    - 1 First move
    - 9 Last move

### **Procedures Used**

- Make\_2 → Tries to make valid 2
  - Make\_2 first tries to play in the center if free and returns 5 (square number).
  - If not possible, then it tries the various suitable non corner square and returns square number.
- $Go(n) \leftarrow$  makes a move in square 'n' which is blank represented by 2.

### **Procedure - PossWin**

- $PossWin(P) \rightarrow Returns$ 
  - o, if player P cannot win in its next move,
  - otherwise the number of square that constitutes a winning move for P.
- Rule
  - If PossWin (P) = o {P can not win} then find whether opponent can win. If so, then block it.

### Strategy used by PosWin

 PosWin checks one at a time, for each rows /columns and diagonals as follows.

- If 3\*3\*2 = 18 then player X can win
- else if 5 \* 5 \* 2 = 50 then player O can win
- These procedures are used in the algorithm on the next slide.

### **Algorithm**

- Assumptions
  - The first player always uses symbol X.
  - There are in all 8 moves in the worst case.
  - Computer is represented by C and Human is represented by H.
  - Convention used in algorithm on next slide
    - If C plays first (Computer plays X, Human plays O) Odd moves
    - If H plays first (Human plays X, Computer plays O) Even moves
    - For the sake of clarity, we use C and H.

### Algo - Computer plays first - C plays odd moves

- **Move 1:** Go (5)
- Move 2: H plays
- **Move 3:** If B[9] is blank, then Go(9) else Go(3) {*make 2*}
- **Move 4:** *H plays*
- Move 5: {By now computer has played 2 chances}
  - If PossWin(C) then {won} Go(PossWin(C))
  - else {**block H**} if PossWin(H) then Go(PossWin(H)) else if B[7] is blank then Go(7) else Go(3)
- Move 6: H plays
- Moves 7 & 9 :
  - If PossWin(C) then {won} Go(PossWin(C))
  - else {block H} if PossWin(H) then Go(PossWin(H)) else Go(Anywhere)
- Move 8: H plays

### Algo - Human plays first - C plays even moves

- Move 1: *H plays*
- **Move** 2: If B[5] is blank, then Go(5) else Go(1)
- **Move 3:** *H plays*
- Move 4: {By now H has played 2 chances}
  - If PossWin(H) then {**block H**} Go (PossWin(H))
  - else Go (Make\_2)
- **Move 5:** *H plays*
- Move 6: {By now both have played 2 chances}
  - If PossWin(C) then {won} Go(PossWin(C))
  - else {block H} if PossWin(H) then Go(PossWin(H)) else Go(Make\_2)
- Moves 7 & 9 : H plays
- Move 8: {By now computer has played 3 chances}
  - If PossWin(C) then {won} Go(PossWin(C))
  - else {block H} if PossWin(H) then Go(PossWin(H)) else Go(Anywhere)

# Complete Algorithm – Odd moves or even moves for C playing first or second

- **Move 1:** go (5)
- **Move** 2: If B[5] is blank, then Go(5) else Go(1)
- **Move 3:** If B[9] is blank, then Go(9) else Go(3) {*make 2*}
- Move 4: {By now human (playing X) has played 2 chances} If PossWin(X) then {block H} Go (PossWin(X)) else Go (Make\_2)
- **Move 5:** {**By now computer has played 2 chances**} If PossWin(X) then {**won**} Go(PossWin(X)) else {**block H**} if PossWin(O) then Go(PossWin(O)) else if B[7] is blank then Go(7) else Go(3)
- **Move** 6: {**By now both have played 2 chances**} If PossWin(O) then {**won**} Go(PossWin(O)) else {**block H**} if PossWin(X) then Go(PossWin(X)) else Go(Make\_2)
- Moves 7 & 9 : {By now human (playing O) has played 3 chances} If PossWin(X) then {won} Go(PossWin(X)) else {block H} if PossWin(O) then Go(PossWin(O)) else Go(Anywhere)
- **Move** 8: {**By now computer has played 3 chances**} If PossWin(O) then {**won**} Go(PossWin(O)) else {**block H**} if PossWin(X) then Go(PossWin(X)) else Go(Anywhere)

### **Comments**

- Not as efficient as first one in terms of time.
- Several conditions are checked before each move.
- It is memory efficient.
- Easier to understand & complete strategy has been determined in advance
- Still can not generalize to 3-D.

# Approach 3

- Same as approach 2 except for one change in the representation of the board.
  - Board is considered to be a magic square of size 3 X 3 with 9 blocks numbered by numbers indicated by magic square.
- This representation makes process of checking for a possible win more simple.

## **Board Layout – Magic Square**

• Board Layout as magic square. Each row, column and diagonals add to 15.

**Magic Square** 

| 8 | 3 | 4 |
|---|---|---|
| 1 | 5 | 9 |
| 6 | 7 | 2 |

# Strategy for possible win for one player

- Maintain the list of each player's blocks in which he has played.
  - Consider each pair of blocks that player owns.
  - Compute difference D between 15 and the sum of the two blocks.
  - If D < o or D > 9 then
    - these two blocks are not collinear and so can be ignored
    - otherwise if the block representing difference is blank (i.e., not in either list) then a move in that block will produce a win.

# **Working Example of algorithm**

- Assume that the following lists are maintained up to 3<sup>rd</sup> move.
- Consider the magic block shown in slide 18.
  - First Player X (Human)



Second Player O (Computer)



# Working – contd...

- Strategy is same as in approach 2
  - First check if computer can win.
    - If not then check if opponent can win.
    - If so, then block it and proceed further.
- Steps involved in the play are:
  - First chance, H plays in block numbered as 8
  - Next C plays in block numbered as 5
  - H plays in block numbered 3
  - Now there is a turn of computer.

# Working – contd...

- Strategy by computer: Since H has played two turns and C has played only one turn, C checks if H can win or not.
  - Compute sum of blocks played by H
    - S = 8 + 3 = 11
    - Compute D = 15 11 = 4
    - Block 4 is a winning block for H.
    - So block this block and play in block numbered 4.
    - The list of C gets updated with block number 4 as follows:

C 5 4

### Contd...

- Assume that H plays in block numbered 6.
- Now it's a turn of C.
  - C checks, if C can win as follows:
    - Compute sum of blocks played by C
    - S = 5 + 4 = 9
    - Compute D = 15 9 = 6
    - Block 6 is not free, so C can not win at this turn.
  - Now check if H can win.
    - Compute sum of new pairs (8, 6) and (3, 6) from the list of H
    - S = 8 + 6 = 14
    - Compute D = 15 14 = 1
    - Block 1 is not used by either player, so C plays in block numbered as 1

### Contd..

• The updated lists at 6<sup>th</sup> move looks as follows:

First Player H



Second Player C



- Assume that now H plays in 2.
- Using same strategy, C checks its pair (5, 1) and (4, 1) and finds bock numbered as 9 {15-6 = 9}.
- Block 9 is free, so C plays in 9 and win the game.

### **Comments**

- This program will require more time than two others as
  - it has to search a tree representing all possible move sequences before making each move.
- This approach is extensible to handle
  - 3-dimensional tic-tac-toe.
  - games more complicated than tic-tac-toe.

# 3D Tic Tac Toe (Magic cube)

 All lines parallel to the faces of a cube, and all 4 triagonals sum correctly to 42 defined by

$$S = m(m^3 + 1)/2$$
, where m=3

 No planar diagonals of outer surfaces sum to 42. so there are probably no magic squares in the cube.

| 8  |    | 10 |    |    |    | 19 |    | 6  |
|----|----|----|----|----|----|----|----|----|
| 12 | 7  | 23 | 25 | 14 | 3  | 5  | 21 | 16 |
| 22 | 11 | 9  | 2  | 27 | 13 | 18 | 4  | 20 |

| 8  | 24 | 10 | 15 | 1  | 26 |  | 19 | 17 | 6  |  |
|----|----|----|----|----|----|--|----|----|----|--|
| 12 | 7  | 23 | 25 | 14 | 3  |  | 5  | 21 | 16 |  |
| 22 | 11 | 9  | 2  | 27 | 13 |  | 18 | 4  | 20 |  |



- Magic Cube has 6 outer and 3 inner and 2 diagonal surfaces
- Outer 6 surfaces are not magic squares as diagonals are not added to 42.
- Inner 5 surfaces are magic square.