
INTELLIGENT SYSTEMS (CSE-303-F)

Section A

Tic Tac Toe Game playing strategies

Tic–Tac–Toe game playing

 Two players

 human
 computer.

 The objective is to write a computer program in such a
way that computer wins most of the time.

 Three approaches are presented to play this game
which increase in
 Complexity
 Use of generalization
 Clarity of their knowledge
 Extensibility of their approach

 These approaches will move towards being
representations of what we will call AI techniques.

Tic Tac Toe Board- (or Noughts and crosses, Xs and Os)

1 2 3

4 5 6

7 8 9

positions

It is two players, X and O, game who take turns marking the

spaces in a 3×3 grid. The player who succeeds in placing three

respective marks in a horizontal, vertical, or diagonal row wins

the game.

Approach 1

Data Structure

 Consider a Board having nine elements vector.

 Each element will contain

● 0 for blank

● 1 indicating X player move

● 2 indicating O player move

 Computer may play as X or O player.

 First player who so ever is always plays X.

Move Table MT

 MT is a vector of 39 elements, each element of
which is a nine element vector representing board
position.

 Total of 39 (19683) elements in MT

 Index Current Board position New Board position

 0 000000000 000010000
 1 000000001 020000001
 2 000000002 000100002
 3 000000010 002000010
 :
 :

Algorithm

 To make a move, do the following:

 View the vector (board) as a ternary number and
convert it to its corresponding decimal number.

 Use the computed number as an index into the MT and
access the vector stored there.

● The selected vector represents the way the board will look
after the move.

 Set board equal to that vector.

Comments

 Very efficient in terms of time but has several
disadvantages.

 Lot of space to store the move table.

 Lot of work to specify all the entries in move table.

 Highly error prone as the data is voluminous.

 Poor extensibility

● 3D tic-tac-toe = 327 board position to be stored.

 Not intelligent at all.

Approach 2

 Data Structure

 Board: A nine-element vector representing the board: B[1..9]

 Following conventions are used

 2 - indicates blank

 3 - X

 5 - 0

 Turn: An integer

 1 - First move

 9 - Last move

Procedures Used
 Make_2  Tries to make valid 2

 Make_2 first tries to play in the center if free and returns

5 (square number).
 If not possible, then it tries the various suitable non

corner square and returns square number.

 Go(n)  makes a move in square ‘n’ which is blank
represented by 2.

Procedure - PossWin

 PossWin (P)  Returns

 0, if player P cannot win in its next move,
 otherwise the number of square that constitutes a

winning move for P.

 Rule
 If PossWin (P) = 0 {P can not win} then find whether

opponent can win. If so, then block it.

Strategy used by PosWin

 PosWin checks one at a time, for each rows /columns
and diagonals as follows.

 If 3 * 3 * 2 = 18 then player X can win

 else if 5 * 5 * 2 = 50 then player O can win

 These procedures are used in the algorithm on the
next slide.

Algorithm

 Assumptions

 The first player always uses symbol X.

 There are in all 8 moves in the worst case.

 Computer is represented by C and Human is
represented by H.

 Convention used in algorithm on next slide

 If C plays first (Computer plays X, Human plays O) - Odd
moves

 If H plays first (Human plays X, Computer plays O) - Even
moves

 For the sake of clarity, we use C and H.

Algo - Computer plays first – C plays odd moves
 Move 1: Go (5)

 Move 2: H plays

 Move 3: If B[9] is blank, then Go(9) else Go(3) {make 2}

 Move 4: H plays

 Move 5: {By now computer has played 2 chances}

 If PossWin(C) then {won} Go(PossWin(C))

 else {block H} if PossWin(H) then Go(PossWin(H)) else if B[7] is
blank then Go(7) else Go(3)

 Move 6: H plays

 Moves 7 & 9 :

 If PossWin(C) then {won} Go(PossWin(C))

 else {block H} if PossWin(H) then Go(PossWin(H)) else
Go(Anywhere)

 Move 8: H plays

Algo - Human plays first – C plays even moves
 Move 1: H plays
 Move 2: If B[5] is blank, then Go(5) else Go(1)
 Move 3: H plays
 Move 4: {By now H has played 2 chances}

 If PossWin(H) then {block H} Go (PossWin(H))
 else Go (Make_2)

 Move 5: H plays
 Move 6: {By now both have played 2 chances}

 If PossWin(C) then {won} Go(PossWin(C))
 else {block H} if PossWin(H) then Go(PossWin(H)) else

Go(Make_2)
 Moves 7 & 9 : H plays
 Move 8: {By now computer has played 3 chances}

 If PossWin(C) then {won} Go(PossWin(C))
 else {block H} if PossWin(H) then Go(PossWin(H)) else

Go(Anywhere)

Complete Algorithm – Odd moves or even moves for C
playing first or second

 Move 1: go (5)
 Move 2: If B[5] is blank, then Go(5) else Go(1)
 Move 3: If B[9] is blank, then Go(9) else Go(3) {make 2}
 Move 4: {By now human (playing X) has played 2 chances} If PossWin(X)

then {block H} Go (PossWin(X)) else Go (Make_2)
 Move 5: {By now computer has played 2 chances} If PossWin(X) then

{won} Go(PossWin(X)) else {block H} if PossWin(O) then Go(PossWin(O))
else if B[7] is blank then Go(7) else Go(3)

 Move 6: {By now both have played 2 chances} If PossWin(O) then {won}
Go(PossWin(O)) else {block H} if PossWin(X) then Go(PossWin(X)) else
Go(Make_2)

 Moves 7 & 9 : {By now human (playing O) has played 3 chances} If
PossWin(X) then {won} Go(PossWin(X)) else {block H} if PossWin(O)
then Go(PossWin(O)) else Go(Anywhere)

 Move 8: {By now computer has played 3 chances} If PossWin(O) then
{won} Go(PossWin(O)) else {block H} if PossWin(X) then Go(PossWin(X))
else Go(Anywhere)

Comments

 Not as efficient as first one in terms of time.

 Several conditions are checked before each move.

 It is memory efficient.

 Easier to understand & complete strategy has been
determined in advance

 Still can not generalize to 3-D.

Approach 3
 Same as approach 2 except for one change in the

representation of the board.

 Board is considered to be a magic square of size 3 X 3
with 9 blocks numbered by numbers indicated by magic
square.

 This representation makes process of checking for a
possible win more simple.

Board Layout – Magic Square
 Board Layout as magic square. Each row, column

and diagonals add to 15.

 8 3 4

 1 5 9

 6 7 2

Magic Square

Strategy for possible win for one player

 Maintain the list of each player’s blocks in which he
has played.

 Consider each pair of blocks that player owns.

 Compute difference D between 15 and the sum of the
two blocks.

 If D < 0 or D > 9 then

 these two blocks are not collinear and so can be
ignored

 otherwise if the block representing difference is blank
(i.e., not in either list) then a move in that block will
produce a win.

Working Example of algorithm
 Assume that the following lists are maintained up to

3rd move.
 Consider the magic block shown in slide 18.

 First Player X (Human)

 8 3

 Second Player O (Computer)

 5

Working – contd..

 Strategy is same as in approach 2

 First check if computer can win.

 If not then check if opponent can win.

 If so, then block it and proceed further.

 Steps involved in the play are:

 First chance, H plays in block numbered as 8

 Next C plays in block numbered as 5

 H plays in block numbered 3

 Now there is a turn of computer.

Working – contd..
 Strategy by computer: Since H has played two

turns and C has played only one turn, C checks if
H can win or not.

 Compute sum of blocks played by H

 S = 8 + 3 = 11

 Compute D = 15 – 11 = 4

 Block 4 is a winning block for H.

 So block this block and play in block numbered 4.

 The list of C gets updated with block number 4 as follows:

 H 8 3 C 5 4

Contd..
 Assume that H plays in block numbered 6.

 Now it’s a turn of C.
 C checks, if C can win as follows:

 Compute sum of blocks played by C

 S = 5 + 4 = 9

 Compute D = 15 – 9 = 6

 Block 6 is not free, so C can not win at this turn.

 Now check if H can win.
 Compute sum of new pairs (8, 6) and (3, 6) from the list of H

 S = 8 + 6 = 14

 Compute D = 15 – 14 = 1

 Block 1 is not used by either player, so C plays in block numbered
as 1

Contd..
 The updated lists at 6th move looks as follows:

 First Player H

 8 3 6

 Second Player C

 5 4 1

 Assume that now H plays in 2.

 Using same strategy, C checks its pair (5, 1) and (4, 1)
and finds bock numbered as 9 {15-6 = 9}.

 Block 9 is free, so C plays in 9 and win the game.

Comments

 This program will require more time than two others

as

 it has to search a tree representing all possible move
sequences before making each move.

 This approach is extensible to handle

 3-dimensional tic-tac-toe.

 games more complicated than tic-tac-toe.

3D Tic Tac Toe (Magic cube)
 All lines parallel to the faces of a cube, and all 4

triagonals sum correctly to 42 defined by

 S = m(m3 + 1)/2 , where m=3

 No planar diagonals of outer surfaces sum to 42. so
there are probably no magic squares in the cube.

8 24 10 15 1 26 19 17 6

12 7 23 25 14 3 5 21 16

22 11 9 2 27 13 18 4 20

 8 24 10

12 7 23

22 11 9

15 1 26

25 14 3

 2 27 13

19 17 6

 5 21 16

18 4 20

8 24 10 15 1 26 19 17 6

12 7 23 25 14 3 5 21 16

22 11 9 2 27 13 18 4 20

• Magic Cube has 6 outer

and 3 inner and 2 diagonal

surfaces

• Outer 6 surfaces are not

magic squares as diagonals

are not added to 42.

• Inner 5 surfaces are magic

square.

